<img height="1" width="1" style="display:none;" alt="" src="https://px.ads.linkedin.com/collect/?pid=2960562&amp;fmt=gif">

NDR364

The NDR364 SDR is a 4-channel, superheterodyne downconverter that covers RF signals from 20 MHz to 6 GHz. It utilizes integrated high-dynamic-range 16-bit ADC's to digitize a 125 MHz wide IF at a 368 Msps sample rate. The NDR364 also includes a built-in GPS receiver and accepts a 1PPS input to support precision timing applications.

Most NDR products offer GNURadio modules to provide seamless open-source software development. More information can be found here.

Specifications

Platforms
Digital
20 MHz
6 GHz
Indep. &
Phase
Coherent
10 MHz,
PPS, GPS
-
-
4
0
125 MHz
90 dB
3.5 lb
1.6 kg
38 W
Ethernet
etc.
16/ -

FEATURES

  • feature_checkmark
    Small Size: 5.7” W x 8.4” D x 1.6” H
  • feature_checkmark
    Suitable For Harsh Environments: The NDR364 is housed in a durable aluminum chassis, ensuring robust RF shielding, efficient thermal management, and reliable protection suitable for even the harshest environments.
  • feature_checkmark
    Ideal For Multi-channel Applications: RF front-end features 4 channels that operate both independently and phase coherently making it ideal for a variety of multi-channel applications such as geolocation, wideband recording, and direction finding.

Resources

Resource type

All
Datasheets
Application notes
Case studies
Open-source repositories
Blog
Videos
User Manuals

Products

All
MATCHSTIQ™ G20
MATCHSTIQ™ G40
MATCHSTIQ™ X40
MATCHSTIQ™ Z2
MATCHSTIQ™ Z3u
MATCHSTIQ™ V40
MATCHSTIQ™ Z4
NDR318
NDR325
NDR358
NDR364
NDR374
NDR504
NDR505
NDR551
NDR562
NDR585
NDR818
NDR888
SIDEKIQ™ M.2
SIDEKIQ™ Mini PCIE
SIDEKIQ™ NV100
SIDEKIQ™ NV800
SIDEKIQ™ NVM2
SIDEKIQ™ Stretch
SIDEKIQ™ VPX400
SIDEKIQ™ VPX410
SIDEKIQ™ X4
SIDEKIQ™ Z2
Epiq Skylight™
Epiq ERA™
Epiq PRiSM™
Epiq Flying Fox® Enterprise
DeepSig
Libsidekiq
GNU Radio

Industry

All
SDR
EPIQ Solutions
Flying Fox Enterprise
Wireless Detections
Software-Defined radios
Zero False Positive Detection
SOSA
Product Development
Low SWaP
Rogue Wireless Device Detection
Sidekiq X4
Troubleshooting
Sidekiq Z2
Xiphos
Advanced Data Processing
AI/ML
Mini PCIe
Sidekiq VPX400
Open Architecture
Product Release
Small Form Factor
Aquisition
Open Source
UAV
Payload
Sidekiq NV100
Libsidekiq
Video
GNU Radio
Aaron Foster
Sidekiq NVM2
Raspberry Pi
APPLY FILTERS

Datasheets

10/01/2024
Datasheets

Epiq - datasheet - NDR364

The NDR364 high performance SDR is a 4-channel, superheterodyne downconverter that covers RF signals from 20 MHz to 6 GHz. Integrated high dynamic range 16-bit Analogto-Digital converters (ADC’s) are utilized to digitize a 125 MHz wide IF at 368 Msps sample rate. The NDR364 includes a builtin GPS receiver and accepts a 1PPS input to support precision timing applications. Command and control of the SDR are via a Gigabit Ethernet interface and power is derived from a DC external power supply input. Total power consumption is 38 Watts. An on-board Kintex UltraScale series FPGA is used for the channelizer, selectable decimation stages, VITA-49 formatter, data multiplexer and 10 Gigabit Ethernet Digital IF data interfaces.

10/01/2024
Datasheets

Epiq Block Diagram Cheat Sheet

10/01/2024
Datasheets

Epiq RF Front Ends Cheat Sheet

10/01/2024
Datasheets

Epiq Product Groups Cheat Sheet

Application notes

10/01/2024
Application notes

High Performance SDRs IP3 Specmanship

Third Order Intercept Point (TOI or IP3) is a measure of how well an RF component or system can maintain linearity and performance under strong signal conditions. While it is an important parameter in almost any receiver, it becomes crucial in those designed to handle the weakest signals in the presence of the strongest interferers, such as the high end systems that Epiq designs for. This measurement therefore becomes a parameter that systems such as software defined radios (SDRs) live or die by when suppliers are being selected for military programs. Because the temptations to game the system are so strong, we wanted to put a stake in the ground on how we measure IP3, and why we try to make measurements that will be faithful to real-world use. Note that we’re assuming you, as the reader, are already familiar with how IP3 measurements are made - if not, one of many good tutorials can be found on YouTube here.

10/01/2024
Application notes

High-Performance SDR Architecture and Applications Comparison

A key attribute of Software Defined Radios (SDRs) is their flexibility, which allows them to be applied to a wide range of different applications. The advent of highly integrated System-on-Chip (SoC) semiconductor devices increase the design options available but are only one part of the successful implementation of an SDR to a specific application. This note looks at a couple of defense applications that place very different priorities onto the SDR. One places the biggest emphasis on outright RF performance and throughput. The other prioritizes size, weight, power and cost (SWaP-C) above everything else, enabling RF capabilities to be squeezed onto platforms that have either never been able to fit it on at all, or certainly not with the capabilities now available. In both cases the objective is to provide the end user with as much situational awareness as possible. The two examples are shown in Figure 1. High performance platforms are often airborne, but can also be land or seabased. Low-SWaP platforms can be unmanned systems, man-packs or similar.

10/01/2024
Application notes

High-Performance SDR Design Considerations

A common use-case for the highest performance Software Defined Radios (SDRs) is airborne situational awareness. As the spectrum gets increasingly crowded, and adversaries more capable, the task of examining wide bands, making sense of it all while not missing anything gets harder. As with any engineering challenge, making the right trade-offs is crucial, and this short note looks at some of the relevant ones.

10/01/2024
Application notes

SDR Architecture Comparison

We’ve written elsewhere1 about how UxS (Unmanned Systems) power budgeting is like squeezing a balloon between the required frequency range, RF performance, number of channels and processing, which all have a big impact on power consumption, heat dissipation, and ultimately achievable range. Our business primarily focuses on smaller platforms where the constraints are at their most extreme. We are technology agnostic, but having such a clear focus guides the choices and tradeoffs we make in our designs. This short note describes some of these.

10/01/2024
Application notes

Which RF Architecture Should I Choose

Software Defined Radios (SDRs) have become ubiquitous in applications that value their flexibility, reconfigurability, spectrum agility and upgradability. These include defense, public safety, wireless infrastructure, space, SATCOM, test and measurement to name a few. However, there are several common methods of implementing SDR architectures – how do you know which is best to meet a specific need?

Case studies

Open-source repositories

Blog

10/01/2024
Blog

Welcoming CyberRadio Solutions to Team Epiq

Epiq is welcoming CyberRadio to our team! This acquisition is all about expanding our portfolio to support you in missions across maritime, land, air, and space domains.

10/01/2024
Blog

Software Defined Radios – Which RF Architecture Should I Choose?

Choosing the right RF architecture is critical for SDR performance. From Superheterodyne to Direct Sampling, each offers unique trade-offs in size, power, and capability. Discover which architecture best fits your mission needs—register now to access the full article.

User Manuals

ndr364

Contact

Ready to tap into the power of Epiq's SDR modules and platforms? Request a dev kit today. Just fill out the form below and we'll get back to you shortly.